Waveguide design as biosensors

Currently there are numerous advances in the medical area that lead to more accurate diagnoses. However, there is an opportunity issue in terms of timely and non-invasive diagnosis. Detecting and characterizing small particles such as viruses in the air or bacteria in food is very useful, and it has...

Disgrifiad llawn

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Prif Awduron: Barboza-Tello, Norma Alicia, Ríos-Osuna, Luis Antonio, Medina-Castro, Paúl, Castillo-Barrón, Allen Alexander, Uriarte-Ramírez, Irma, Martínez-Plata, Daniela, Díaz-Hernández, Miguel Alejandro
Fformat: info:eu-repo/semantics/article
Iaith:spa
Cyhoeddwyd: Universidad Autónoma de Baja California 2020
Pynciau:
Mynediad Ar-lein:https://recit.uabc.mx/index.php/revista/article/view/2oba16
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
Disgrifiad
Crynodeb:Currently there are numerous advances in the medical area that lead to more accurate diagnoses. However, there is an opportunity issue in terms of timely and non-invasive diagnosis. Detecting and characterizing small particles such as viruses in the air or bacteria in food is very useful, and it has been reported that among the existing diagnostic and analysis techniques for biological samples, those based on waveguide biosensor have significant advantages, such as higher resolution and real-time detecting. The physical and geometric characteristics of the waveguide will determine its usefulness in each application. This paper presents the methodology for modeling waveguides using the free software called Metric; Silicon nitride (Si3N4) waveguides were modeled to study their potential as biosensors.