Analytical development of phenol derivatives in water using liquid chromatography

A high-performance liquid chromatographic analytical method has been developed for the determination of chlorine and nitrophenols at trace level (µg/L) in water, using a reversed-phase elution gradient and an ultraviolet (UV) detector. A Solid Phase Extraction (SPE) method was employed, which involv...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lemus-Solorio, Alfonso, Núñez-Gaytán, María Elena, Núñez-Gaytán, Ana María, Lemus-Solorio, Martha Angélica, Núñez-Hernández, Sandra
Format: info:eu-repo/semantics/article
Langue:spa
Publié: Universidad Autónoma de Baja California 2021
Sujets:
Accès en ligne:https://recit.uabc.mx/index.php/revista/article/view/recit_93
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:A high-performance liquid chromatographic analytical method has been developed for the determination of chlorine and nitrophenols at trace level (µg/L) in water, using a reversed-phase elution gradient and an ultraviolet (UV) detector. A Solid Phase Extraction (SPE) method was employed, which involved the design of a two-dimensional pre-column system coupled with high-performance liquid chromatography (HPLC) in order to preconcentrate, purify and isolate the solutes in environmental aqueous matrices. These phenolic compounds are considered priority pollutants by the United States Environmental Protection Agency (USEPA); the compounds are 4,6-dinitro-2-methyl phenol, 2,4-dimethylphenol, 4-chloro-3-methyl phenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The developed method is simple, fast, accurate, and precise. Recoveries greater than 90 % were obtained for the phenols 4,6-dinitro-2-methyl phenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol, approximately 80 % for pentachlorophenol and 52 % for 2,4-dimethylphenol. In addition, an acceptable precision (CV ˂ 5 %) was obtained for all solutes at these concentration levels.