Silver Nanoparticles as Nanoantibiotics: A Comparative Analysis of their Toxicity on Biological Systems of Different Complexity

Currently, silver nanoparticles (AgNPs) are extensively studied for biomedical applications, but although nanomaterials provide many benefits, recently their comparative toxicity have barely been explored. In the current work, AgNPs toxicity on biological systems of different levels of complexity wa...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile Nagusiak: Vázquez-Muñoz, Roberto, Borrego-Rivero, Belén, Juárez-Moreno, Karla Oyuky, García-García, Maritza Roxana, Mota-Morales, Josué David, Bogdanchikova, Nina, Huerta-Saquero, Alejandro
Formatua: Online
Hizkuntza:eng
Argitaratua: Universidad Autónoma de Baja California 2018
Sarrera elektronikoa:https://recit.uabc.mx/index.php/revista/article/view/26
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Gaia:Currently, silver nanoparticles (AgNPs) are extensively studied for biomedical applications, but although nanomaterials provide many benefits, recently their comparative toxicity have barely been explored. In the current work, AgNPs toxicity on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way. The organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). We found that growth of biological systems of different taxonomical groups –in vitro, at a cellular level- is inhibited at concentrations of AgNPs within the same order of magnitude (101 μg/ml). Thus, the AgNPs toxicity does not depend on the complexity of the organisms. The fact that cells and virus are inhibited with a concentration of AgNPs within the same order of magnitude could be explained considering that silver affects fundamental structures for cells and virus alike.