Numerical study of a solar collector using water and titanium dioxide water-based nanofluid as working fluids by means of computational fluid dynamics

A thermo-hydraulic performance and entropy generation comparison of an evacuated tube solar collector using water and titanium dioxide (TiO2) water-based nanofluid as working fluids is carried out by means of Computational Fluid Dynamics. It is considered a complete 3D geometry under meteorological...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: López Núñez, Oscar Alejandro, Lara Chávez, Fernando, Cardenas Robles, Arilí, Gónzalez Ángeles, Álvaro
Formato: Online
Lenguaje:spa
Publicado: Universidad Autónoma de Baja California 2023
Acceso en línea:https://recit.uabc.mx/index.php/revista/article/view/260
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A thermo-hydraulic performance and entropy generation comparison of an evacuated tube solar collector using water and titanium dioxide (TiO2) water-based nanofluid as working fluids is carried out by means of Computational Fluid Dynamics. It is considered a complete 3D geometry under meteorological conditions of the city of Mexicali, Mexico under an operation time of 9 hours. It was found that, throughout the operation time, the evacuated tube solar collector had a better performance in terms of outlet temperature and velocity inside the solar collector using the nanofluid than using only water as a working fluid. The phenomena of viscous effects, heat transfer, and heat loss in a global and local form are considered in the formulation of the entropy generation. The local entropy generation formulation also allows us to illustrate the exact location of the irreversibilities. It was found that, using TiO2 water-based nanofluid as a working fluid leads to a reduction of the entropy generation in all the evacuated tube solar collectors. Finally, this type of analysis by obtaining the global and local entropy generation can be helpful to improve their performance through entropy minimization.