Transformation of potentially toxic lead to crystalline Pb (NO3)2

The accumulation of lead in the environment is a cause of health problems in humans. The mean lethal dose reported in mg/kg for Pb, Pb(NO3)2 and PbO is 400, 2250 and 2000, respectively. Due to the high toxicity of metallic lead with respect to lead nitrate, a methodology has been developed to transf...

Descrición completa

Gardado en:
Detalles Bibliográficos
Autores principales: Villalón López, Ulises Alejandro, Moreno Armenta, María Guadalupe, Barrera Rodríguez, Arturo, Rogel Hernández, Eduardo, Quintana Melgoza, Juan Manuel
Formato: Online
Idioma:spa
Publicado: Universidad Autónoma de Baja California 2019
Acceso en liña:https://recit.uabc.mx/index.php/revista/article/view/41
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
id recit-article-41
record_format ojs
spelling recit-article-412022-10-17T18:39:37Z Transformation of potentially toxic lead to crystalline Pb (NO3)2 Transformación de Plomo Potencialmente Tóxico a Pb (NO3)2 Cristalino Villalón López, Ulises Alejandro Moreno Armenta, María Guadalupe Barrera Rodríguez, Arturo Rogel Hernández, Eduardo Quintana Melgoza, Juan Manuel Toxic residual lead Chemical synthesis Lead nitrate product. Plomo residual tóxico Síntesis química Producto nitrato de plomo. The accumulation of lead in the environment is a cause of health problems in humans. The mean lethal dose reported in mg/kg for Pb, Pb(NO3)2 and PbO is 400, 2250 and 2000, respectively. Due to the high toxicity of metallic lead with respect to lead nitrate, a methodology has been developed to transform residual lead into lead nitrate, whose toxicity is five times lower than metallic lead. On the other hand, lead nitrate can be a precursor for the synthesis of materials with potential industrial application. The synthesis of Pb(NO3)2 is carried out by mixing the residual metallic lead and 15.7 molar nitric acid in a proportion of reagents [1:4]. Subsequently, the mixture is subjected to magnetic stirring to dissolve the lead and form a white precipitate, dried at 110 ° C for 1 h obtaining an experimental yield of 99 %. The synthesized material is characterized by X–ray diffraction, scanning electron microscopy and energy dispersion spectroscopy. Likewise, this methodology has a favorable impact on ecosystems, since lead contamination will be diminished. La acumulación de plomo en el ambiente es una causa de problemas de salud en humanos. La dosis letal media reportada en mg/kg para Pb, Pb (NO3)2 y PbO es de 400, 2250 y 2000, respectivamente. Debido a la alta toxicidad del plomo metálico con respecto al nitrato de plomo se ha desarrollado una metodología para transformar el plomo residual a nitrato de plomo, cuya toxicidad es cinco veces menor que el plomo metálico. Por otra parte, el nitrato de plomo puede ser precursor para la síntesis de materiales con potencial aplicación industrial. La síntesis del Pb (NO3)2 se realiza mezclando el plomo metálico residual y ácido nítrico 15.7 molar en una proporción de reactivos [1:4]. Posteriormente, la mezcla se somete a agitación magnética hasta disolver el plomo y formar un precipitado blanco, se seca a 110 °C durante 1 h obteniendo un rendimiento experimental del 99 %. El material sintetizado se caracteriza por difracción de rayos–X, microscopía electrónica de barrido y espectroscopia por dispersión de energía. Así mismo, esta metodología tiene un impacto favorable en los ecosistemas, ya que la contaminación por plomo se verá disminuida. Universidad Autónoma de Baja California 2019-09-25 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Research article Artículo de investigación application/pdf text/html application/xml https://recit.uabc.mx/index.php/revista/article/view/41 10.37636/recit.v23106112 REVISTA DE CIENCIAS TECNOLÓGICAS; Vol. 2 No. 3 (2019): July-September; 106-112 REVISTA DE CIENCIAS TECNOLÓGICAS; Vol. 2 Núm. 3 (2019): Julio-Septiembre; 106-112 2594-1925 spa https://recit.uabc.mx/index.php/revista/article/view/41/59 https://recit.uabc.mx/index.php/revista/article/view/41/85 https://recit.uabc.mx/index.php/revista/article/view/41/147 Copyright (c) 2019 Ulises Alejandro Villalón López, María Guadalupe Moreno Armenta, Arturo Barrera Rodríguez, Eduardo Rogel Hernández, Juan Manuel Quintana Melgoza http://creativecommons.org/licenses/by/4.0
institution RECIT
collection OJS
language spa
format Online
author Villalón López, Ulises Alejandro
Moreno Armenta, María Guadalupe
Barrera Rodríguez, Arturo
Rogel Hernández, Eduardo
Quintana Melgoza, Juan Manuel
spellingShingle Villalón López, Ulises Alejandro
Moreno Armenta, María Guadalupe
Barrera Rodríguez, Arturo
Rogel Hernández, Eduardo
Quintana Melgoza, Juan Manuel
Transformation of potentially toxic lead to crystalline Pb (NO3)2
author_facet Villalón López, Ulises Alejandro
Moreno Armenta, María Guadalupe
Barrera Rodríguez, Arturo
Rogel Hernández, Eduardo
Quintana Melgoza, Juan Manuel
author_sort Villalón López, Ulises Alejandro
title Transformation of potentially toxic lead to crystalline Pb (NO3)2
title_short Transformation of potentially toxic lead to crystalline Pb (NO3)2
title_full Transformation of potentially toxic lead to crystalline Pb (NO3)2
title_fullStr Transformation of potentially toxic lead to crystalline Pb (NO3)2
title_full_unstemmed Transformation of potentially toxic lead to crystalline Pb (NO3)2
title_sort transformation of potentially toxic lead to crystalline pb (no3)2
description The accumulation of lead in the environment is a cause of health problems in humans. The mean lethal dose reported in mg/kg for Pb, Pb(NO3)2 and PbO is 400, 2250 and 2000, respectively. Due to the high toxicity of metallic lead with respect to lead nitrate, a methodology has been developed to transform residual lead into lead nitrate, whose toxicity is five times lower than metallic lead. On the other hand, lead nitrate can be a precursor for the synthesis of materials with potential industrial application. The synthesis of Pb(NO3)2 is carried out by mixing the residual metallic lead and 15.7 molar nitric acid in a proportion of reagents [1:4]. Subsequently, the mixture is subjected to magnetic stirring to dissolve the lead and form a white precipitate, dried at 110 ° C for 1 h obtaining an experimental yield of 99 %. The synthesized material is characterized by X–ray diffraction, scanning electron microscopy and energy dispersion spectroscopy. Likewise, this methodology has a favorable impact on ecosystems, since lead contamination will be diminished.
publisher Universidad Autónoma de Baja California
publishDate 2019
url https://recit.uabc.mx/index.php/revista/article/view/41
_version_ 1792095363224567808