Layered double hydroxides: application in the inhibition of coliforms

In this work, the preparation of different organic/inorganic hybrid materials and their evaluation as bactericides against Escherichia coli (E. coli) and Salmonella typhi (S. typhi) was studied. The main objective of the present investigation was to synthesize and characterize biocompatible hybrid m...

Full description

Saved in:
Bibliographic Details
Main Authors: Guerra-González, Roberto, Lemus-Solorio, Martha Angélica, Rivera-Rojas, José Luis, Lemus-Solorio, Alfonso, Mondragón-Herrera, América Abisay, Martínez-Cinco, Marco Antonio
Format: Online
Language:eng
Published: Universidad Autónoma de Baja California 2021
Online Access:https://recit.uabc.mx/index.php/revista/article/view/83
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, the preparation of different organic/inorganic hybrid materials and their evaluation as bactericides against Escherichia coli (E. coli) and Salmonella typhi (S. typhi) was studied. The main objective of the present investigation was to synthesize and characterize biocompatible hybrid materials that immobilize molecules with antibacterial activity in inorganic lamellar double hydroxides based on inorganic lamellar matrices and to evaluate their antibacterial activity against Escherichia coli (E. coli) and Salmonella typhi (S. typhi). The hybrid materials consist of the association of an inorganic lamellar double hydroxide, or hydrotalcite-type compounds, with organic molecules with antibacterial activity, hosted in solids. Lamellar double hydroxides (LDH) are synthetic structures formed by positively charged metal hydroxide films that are stabilized with interlamellar anions. Different hybrid materials have been studied from hydrotalcite-type compounds, such as MgAl, ZnAl, and MgFeAl, containing organic species of sodium cephalexin and nalidixic and pipemidic acids. The intercalation of the different anions was performed by one of the different existing methods: coprecipitation of the hydrotalcite-type compounds in the presence of the molecule of interest, and by the memory effect. The characterization of the materials was carried out by X-ray diffraction, IR, and solid nuclear magnetic resonance spectroscopy, specifically analyzing the 27Al and 13C nuclei, and thermogravimetric analysis. The evaluation of the antibacterial activity of these materials was evaluated on cultures of Escherichia coli (E. coli) and Salmonella typhi (S. typhi) strains. The antibacterial activity of the tested hybrid systems is not always a direct function of the amount of antibiotic intercalated. It was obtained that the LDH ZnAl- NADmem presents a controlled release since when the material was exposed three times against Escherichia coli (E. coli) bacteria, it continued eliminating bacteria, presenting a bacteriostatic effect in the third exposure, since it did not eliminate bacteria.